Introduction of human telomerase reverse transcriptase to normal human fibroblasts enhances DNA repair capacity.

نویسندگان

  • Ki-Hyuk Shin
  • Mo K Kang
  • Erica Dicterow
  • Ayako Kameta
  • Marcel A Baluda
  • No-Hee Park
چکیده

PURPOSE From numerous reports on proteins involved in DNA repair and telomere maintenance that physically associate with human telomerase reverse transcriptase (hTERT), we inferred that hTERT/telomerase might play a role in DNA repair. We investigated this possibility in normal human oral fibroblasts (NHOF) with and without ectopic expression of hTERT/telomerase. EXPERIMENTAL DESIGN To study the effect of hTERT/telomerase on DNA repair, we examined the mutation frequency rate, host cell reactivation rate, nucleotide excision repair capacity, and DNA end-joining activity of NHOF and NHOF capable of expressing hTERT/telomerase (NHOF-T). NHOF-T was obtained by transfecting NHOF with hTERT plasmid. RESULTS Compared with parental NHOF and NHOF transfected with empty vector (NHOF-EV), we found that (a) the N-methyl-N'-nitro-N-nitrosoguanidine-induced mutation frequency of an exogenous shuttle vector was reduced in NHOF-T, (b) the host cell reactivation rate of N-methyl-N'-nitro-N-nitrosoguanidine-damaged plasmids was significantly faster in NHOF-T; (c) the nucleotide excision repair of UV-damaged DNA in NHOF-T was faster, and (d) the DNA end-joining capacity in NHOF-T was enhanced. We also found that the above enhanced DNA repair activities in NHOF-T disappeared when the cells lost the capacity to express hTERT/telomerase. CONCLUSIONS These results indicated that hTERT/telomerase enhances DNA repair activities in NHOF. We hypothesize that hTERT/telomerase accelerates DNA repair by recruiting DNA repair proteins to the damaged DNA sites.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Repair of cyclobutane pyrimidine dimers or dimethylsulfate damage in DNA is identical in normal or telomerase-immortalized human skin fibroblasts

The progression of a normal cell to senescence in vivo and in vitro is accompanied by a reduction in the length of the telomeres, the chromosome capping segments at the end of each linkage group. However, overexpression of the reverse transcriptase subunit (HTERT) of the ribonucleoprotein telomerase restores telomere length and delays cellular senescence. Although some data exist in the literat...

متن کامل

The non-reverse transcriptase activity of the human telomerase reverse transcriptase promotes tumor progression (review).

In human cancer, high expression of telomerase is correlated with tumor aggressiveness and metastatic potential. Human telomerase reverse transcriptase (hTERT), which regulates telomere length, can promote tumor development. Most research on hTERT has been focused on its crucial function of telomere maintenance. However, there are many phenomena that cannot be explained by its reverse transcrip...

متن کامل

The telomerase reverse transcriptase regulates chromatin state and DNA damage responses.

Constitutive expression of telomerase prevents senescence and crisis by maintaining telomere homeostasis. However, recent evidence suggests that telomerase is dynamically regulated in normal cells and also contributes to transformation independently of net telomere elongation. Here, we show that suppression of the telomerase catalytic subunit [human telomerase reverse transcriptase (hTERT)] exp...

متن کامل

Molecular characterization of human telomerase reverse transcriptase-immortalized human fibroblasts by gene expression profiling: activation of the epiregulin gene.

Reconstitution of telomerase activity by ectopic expression of telomerase reverse transcriptase (hTERT) results in an immortal phenotype in various types of normal human cells, including fibroblasts. Despite lack of transformation characteristics, it is unclear whether hTERT-immortalized cells are physiologically and biochemically the same as their normal counterparts. Here, we compared the gen...

متن کامل

Expression Pattern of Alternative Splicing Variants of Human Telomerase Reverse Transcriptase (hTERT) in Cancer Cell Lines Was not Associated with the Origin of the Cells

Telomerase and systems controlling their activity have been of great attention. There are controversies regarding the role of the alternative splicing forms of the human telomerase reverse transcriptase (hTERT), the catalytic subunit of telomerase. Therefore, the correlation between telomerase enzyme activity, the abundance of alternatively spliced variants of hTERT and doubling time of a seri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Clinical cancer research : an official journal of the American Association for Cancer Research

دوره 10 7  شماره 

صفحات  -

تاریخ انتشار 2004